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Abstract 

The quasi-static ion approximation of Stark broadened spectral lines involves an average of 

the field-dependent line shape over the microfield probability distribution. In the conventional 

approach, this can become computationally expensive since the calculation at each field point 

requires inverting a possibly large matrix. It is shown that these calculations are well suited to 

the “Padé Via Lanczos” approach. The approach allows for an efficient and accurate numerical 

integration over the quasi-static field. In turn, the integration forms the basis for determining 

convergence with Lanczos iterations. Simple examples are used to demonstrate improved 

performance over conventional methods and note the potential for larger gains on more complex 

problems. 
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1. Introduction 

Computer codes have been developed to calculate Stark broadened line shapes from multi-

electron ions extending the capabilities beyond one- or two-electron systems [1-4]. For large 

numbers of atomic levels these calculations can be computationally challenging. Although 

approximations to the physics have been introduced to mitigate the problem, [3] accurate results 

are necessary not only to validate approximate schemes, but also for cases not satisfying the 

approximation criteria. 

Multi-electron ion codes usually make the quasi-static ion approximation where the ion 

motion is assumed negligible during the average lifetime of the radiating states [1-4]. Thus, the 

line shape calculation involves averaging the Stark state mixing and level splitting over the field 

distribution. In the absence of external fields the line shape can be written in the form [1-4], 

 

€ 

I ω( ) = dεP ε( )J ω;ε( )
o

∞
∫  (1.1) 

where   

€ 

ω  is the energy of the photon, 

€ 

P ε( )  is the probability of finding a Stark field of 

magnitude 

€ 

ε at the radiator, and 

€ 

J ω;ε( ) represents the line shape due to electron-radiator 

interactions in the presence of this field. 

The numerical evaluation of the line shape replaces the integral in Eq. (1.1) with the sum 

 

€ 

I ω( ) = wiP εi( )J ω;εi( )
i=1

Nε
∑  (1.2) 

where 

€ 

Nε  is the number of field points and 

€ 

wi
 
are weights appropriate to the integration scheme. 

In calculating Eq. (1.2) it is desirable to select a procedure that simultaneously yields sufficient 

accuracy and minimizes the computational effort. Recently a method [5] based on a Hessenberg 

decomposition was presented that is formally exact, numerically stable, and allows for the 

optimization of the field mesh. 

The purpose here is to take advantage of that formulation, but instead apply the Lanczos 

process to evaluate 

€ 

J ω;ε( ). The proposed method is similar to that used in large-scale linear 

systems involving non-Hermitian matrices [6] providing numerical stability with high efficiency 

compared to traditional calculations. It is stressed that the Lanczos process does not make any 

physical approximations; instead it is a reduced-order model containing a relatively small 

number of dominant eigenvalues. Numerical accuracy is controlled using a straightforward 

scheme to determine convergence of the Lanczos iterations. The procedure is sufficiently 
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efficient that an adaptive quadrature scheme for evaluating Eq. (1.1) may proof satisfactory. 

Alternatively, the Lanczos method can also reveal the structure of 

€ 

J ω;ε( ) through a dispersion 

formula allowing optimization of the field mesh to perform accurately the numerical integration 

over Stark fields. 

2. Padé Via Lanczos 

The field-dependent line shape in Eq. (1.1) can be written in the form [5] 

 
  

€ 

J ω;ε( ) = −π−1 Im t A ω( ) −εB[ ]−1u{ } (2.1) 

where   

€ 

  and 

€ 

u are vectors simply related to the radiator dipole operator, 

€ 

t  superscript denotes 

transpose, 

€ 

A ω( ) represent line broadening in the absence of the quasi-static Stark field, and 

€ 

B 

depends only on the internal coordinates of the radiator. The form of Eq. (2.1) is amenable to the 

“Padé Via Lanczos” (PVL) method, which is an efficient, numerically stable algorithm [6]. 

2.1 Method 

To proceed, rewrite Eq. (2.1) in the form  

 
  

€ 

J ω;ε( ) = −π−1 Im t I − ε −εo( )C[ ]−1r{ } (2.1.1) 

where 

€ 

I  is the identity matrix, 

 

€ 

r = A −εoB[ ]−1u , (2.1.2) 

 

€ 

C = A −εoB[ ]−1B , (2.1.3) 

€ 

εo  is a reference expansion point, and the frequency dependence was suppressed for brevity. 

The tridiagonal decomposition of the matrix 

€ 

C  is accomplished by the Lanczos method [7], 

leading to 

 
  

€ 

J ω;ε( ) = −π−1 Im tQ I − ε −εo( )T[ ]−1Phr{ } (2.1.4) 

with 

 

€ 

C =QTPh  (2.1.5) 

 

€ 

QPh = PhQ = I  (2.1.6) 

where 

€ 

h  superscript denotes Hermitian conjugate and 

€ 

T  is a tridiagonal matrix. All field 

independent quantities are evaluated once at each frequency. Then the calculation of 

€ 

J ω;ε( ) at 

the required 

€ 

Nε  mesh points only requires the tridiagonal solve in Eq. (2.1.4). 
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Although Eq. (2.1.4) appears similar to the results using the Hessenberg decomposition [5], 

there are fundamental differences. By exploiting the remarkable properties of the Lanczos 

method, the PVL approach yields significant savings for large problems [6]. Ultimately, 

Eq. (2.1.4) can be written in the form [6,7] 

 
  

€ 

J ω;ε( ) ≈ Jk ω;ε( ) = −π−1 Im 
t r( )e1t I − ε −εo( )Tk[ ]−1e1{ }  (2.1.7) 

where 
  

€ 

e1 = 1,0,…,0[ ]t  is the first unit vector of length 

€ 

k , the number of Lanczos iterations. This 

is an important result since only the 

€ 

1,1[ ] element of 

€ 

I − ε −εo( )Tk[ ]−1 is required. Since 

€ 

Tk  is a 

tridiagonal matrix, it is possible to derive a Padé expansion for the 

€ 

1,1[ ] element in terms of 

€ 

ε 

(hence, Padé Via Lanczos). In practice, however, the evaluation of Eq. (2.1.7) can be done with a 

recursion relation. Further details are provided in the Appendix. 

2.2 Order-reduction and convergence 

The Lanczos approach provides an approximation to 

€ 

J ω;ε( ) that improves with the number 

of iterations until it reaches its best value when the number of iterations is equal to the size of the 

matrix 

€ 

C . A smooth function, however, can be satisfactorily reproduced with relatively few 

iterations. Thus, the smoothness of the function rather than the size of the matrix 

€ 

C  determines 

the number of iterations. This order-reduction provides a significant computational advantage 

over traditional methods for large matrices and smooth functions. 

Unfortunately, it is not possible to determine the optimal number of Lanczos iterations in 

advance. It is then necessary to use an incremental approach and continue iterating until a 

convergence criterion is satisfied. Here, a straightforward, physically motivated approach is used 

to determine convergence. 

Start with a chosen number of iterations and perform the numerical integration in Eq. (1.2). 

Next increase the iterations by some increment and repeat the numerical integration procedure 

with the larger tridiagonal matrix. If the difference between this answer and the previous one is 

greater than a chosen tolerance, continue the iteration until the criteria is satisfied. The use of the 

integral as the convergence criterion is consistent with the overall goal, the evaluation of the line 

shape in Eq. (1.1). 

In the above approach, there is no expense in the Lanczos procedure itself when increasing 

the number of iterations, since all the information can be stored and the process can be restarted 

without cost. One additional expense is the evaluation of the integral itself, however, this is a 
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small increase in operation count since the evaluation of 

€ 

J ω;ε( ) is of order 

€ 

k . Thus, this 

convergence scheme is inexpensive and can be used at fairly small intervals in the Lanczos 

iterative scheme without adding significantly to the overall operation count. 

It is stressed that the convergence procedure has not been demonstrated to be robust. Since it 

is possible that the procedure as described can display spurious convergence, it may be desirable 

to use more than two Lanczos iterations in the procedure. It should also be pointed out that the 

convergence behavior could be highly erratic, similar to that of iterative techniques such as bi-

conjugate gradients for non-symmetric systems. 

2.3 Orthogonality of Lanczos vectors 

The discussion above highlights the attractive features of the Lanczos method for the 

evaluation of 

€ 

J ω;ε( ). In finite precision arithmetic, however, the Lanczos method can rapidly 

lose the bi-Hermitian property of the Lanczos vectors and become unstable. To remedy the 

situation several schemes have been developed [7-9]. For simplicity, the readily implemented 

and robust Modified Gram Schmidt procedure is applied at each iteration (the equivalent of full 

orthogonalization for complex non-symmetric matrices [7]). Although in most Lanczos 

implementations full orthogonalization is rejected as too expensive, it is shown in Sect. 3.5 that 

full orthogonalization adds relatively little to the overall expense in the present application; 

hence, it is an excellent approach given the ease of implementation. 

2.4 Efficient Stark field integration 

An additional step is necessary in completing the algorithm. That is, the goal is not merely to 

evaluate 

€ 

J ω;ε( ), but to average it over the microfield distribution. Since the evaluation of 

€ 

Jk ω;ε( ) is inexpensive, one approach is to use an adaptive quadrature procedure to compute 

Eq. (1.1). Alternatively, it is possible to determine the location and widths of the peaks in the 

range of integration in advance. As described in [5], this is facilitated by knowing the 

eigenvalues of the matrix 

€ 

C , which are well approximated by those of the tridiagonal matrix 

€ 

Tk . 

In turn, the eigenvalues provide the poles of 

€ 

Jk ω;ε( )  that can be used to optimize the field mesh 

in Eq. (1.2) [5]. 

2.5 Operation counts 

It is useful to have an indication of the operation counts to determine the relative costs of the 

algorithm. Even though the matrices 

€ 

A  and 

€ 

B are typically sparse, it is expedient to take an 



 6 

operation count that ignores the sparsity; thus, leading to conservative estimates. In the 

following, all operation counts assume operations performed with complex numbers. 

In each Lanczos iteration, the quantities 

 
  

€ 

A −εoB( )−1B  (2.5.1) 

and 

 

€ 

A −εoB( )−1B[ ]
h
r  (2.5.2) 

need to be evaluated. This is best achieved by an 

€ 

LDLh  factorization of the matrix 

€ 

A −εoB  [9]. 

Since 

€ 

A −εoB  is a symmetric matrix of rank 

€ 

m , the factorization operational count is 

€ 

~ m3 3 

(neglecting lower order terms in 

€ 

m ). In addition, there are 

€ 

4m2 operations for the Lanczos 

vectors per iteration plus 

€ 

2mk2  operations for 

€ 

k  iterations to ensure the bi-hermitian property of 

the Lanczos vectors. Typically, the latter is an unacceptable expense and is almost invariably 

avoided. In the present situation, however, it is negligible compared to the 

€ 

LDLh  factorization 

cost as long as 

€ 

k << m . Thus, the total cost for performing 

€ 

k  Lanczos iterations is approximately 

 

€ 

Nk ≈
m3

3
+ 4m2k + 2mk2 (2.5.3) 

It the limit that the process is carried out to 

€ 

k = m  Lanczos iterations, 

 

€ 

Nk=m ≈ 6m3 (2.5.3) 

This can be compared with 

€ 

~ 12m3 operations for the Hessenberg decomposition of the matrix 

€ 

C  [5]. Furthermore, the calculation at each field point using the Hessenberg approach requires 

€ 

m2 operations where solving Eq. (2.1.7) requires only 

€ 

3k   operations.  Clearly, the approach 

using the Lanczos method is more efficient. 

It is also worthwhile to compare the operation count to the conventional approach using 

explicit matrix version. In that case the operation count to perform the numerical integration is 

 

€ 

NI ≈ Nεm
3 (2.5.4) 

Adding to Eq. (2.5.3) the cost for solving the tridiagonal system gives for the total operation 

count of the PVL gives 

 

€ 

NL ≈ Nk + 3Nεk  (2.5.5) 

Comparing to the conventional method yields the ratio 
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€ 

NI
NL

≈
3Nε

1+12 k
m

+ 6 k
2

m2
+ 9 Nεk

m3
m>>k,Nε

 →    3Nε  (2.5.6) 

so that for large matrices and relatively smooth 

€ 

Jk ω;ε( ) there is considerable savings. In the 

limit 

€ 

k = m  

 

€ 

NI
NL k=m>>Nε

 →     
3Nε
19

 (2.5.7) 

Even in the extreme iteration limit the PVL method is more efficient than the conventional 

approach. 

It is interesting to note that for 

€ 

k << m  the main cost of the Lanczos method is in the LU 

factorization of the matrix 

€ 

A −εoB . In many situations, however, the interference terms are 

neglected making 

€ 

A  a diagonal matrix [1-4]. Then it is possible by choosing 

€ 

εo = 0 to avoid the 

costly LU factorization. The penalty is a possible increase in the number of Lanczos operations 

to achieve convergence (see Sect. 3). 

A cautionary remark is that the operation counts alone are not sufficient to determine the 

relative time for execution. That is, BLAS3 operations are often an order of magnitude faster 

than operations that have not been optimized and it is necessary to compare actual 

implementations to determine savings in execution time. 

2.6 Calculations on a frequency mesh 

The operation count analysis showed that for a relative small number of Lanczos iterations 

the most expensive aspect of applying the Lanczos process to statistical Stark broadening is the 

€ 

LDLh  factorization of the reference resolvent to solve equations of the form 

 

€ 

A −εoB( )x = b (2.6.1) 

As an alternative, an iterative solver for sparse matrices may provide significant faster results 

[10]. In particular, the iterative solver is efficient if used with a suitable pre-conditioner. In 

spectral line broadening calculations the profile is computed on a frequency mesh; thus, a 

previous factorization at a nearby frequency point may provide a good pre-conditioner. The pre-

conditioner may be useful for nearby frequency points until eventually the number of iterations 

may increase beyond an acceptable value. In that case, a new 

€ 

LDLh  factorization is performed 

and the process repeated. 
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Another way to take advantage of the frequency mesh is when choosing the reference field 

€ 

εo . That is, the expression obtained in the Lanczos process attempts to mimic the behavior of the 

exact Taylor expansion for Eq. (2.1.1) around the point 

€ 

ε = εo. Depending on the structure of the 

integrand in Eq. (1.1), it may be advantageous to expand around different values [6]. In general, 

the algorithm converges to the same result independent of the reference point, but the rate of 

convergence may depend on the choice of 

€ 

εo  (see Sect. 3). Although it is not possible to know 

the ideal reference point beforehand, it should be adequate to use the solution from a previous 

value from a nearby 

€ 

ω  as a suitable estimate. 

3. Numerical example 

The Balmer line series in hydrogen, which involves radiative transitions from principal 

quantum number 

€ 

n ≥ 3 to 

€ 

n = 2, serves as simple example to illustrate the PVL approach. In the 

present calculation, off-diagonal terms of 

€ 

Φ ω( )  as well as line shifts from plasma electrons are 

neglected. The diagonal terms of 

€ 

Φ ω( )  are obtained using a standard approximation [11], where 

the strong collision parameter was extended to higher principal quantum numbers by assuming 

€ 

Cn = 3 n  for 

€ 

n ≥ 6 . The calculation of the matrix 

€ 

B in Eq. (2.1) neglects interactions between 

the upper and lower state manifolds of the radiative transitions; that is, includes all interactions 

except the terms connecting 

€ 

n = 2 and 

€ 

n ≥ 3. The line series is calculated through 

€ 

n = 20 and the 

required radial dipole matrix elements are computed using recursion relations [12]. The 

integration in Eq. (1.1) assumed the Holtsmark distribution in the range 

€ 

0 < ε ≤ 25εH  where 

€ 

εH  

is the Holtsmark field [13]. Since the evaluation of 

€ 

J ω;ε( ) using the Lanczos process is relatively 

fast, the integration was performed with an adaptive quadrature (see Sect. 2.4). Finally, the 

discussion emphasizes a diagonal block with magnetic quantum number   

€ 

m = 0 of size 

€ 

m = 414 . 

Results for 

€ 

Jk ω;ε( ) at   

€ 

ω = 3.02eV  for 

€ 

k  Lanczos iterations using reference points 

€ 

εo = 0 and 2.4εH  are displayed in Figs. 1 and 2, respectively. The frequency corresponds to a 

spectral location in the red wing of the 

€ 

Hδ  (

€ 

n = 6) line. The calculations are done for free 

electron density 

€ 

Ne =1016 cm−3 and temperature 

€ 

T =1eV  so that the 

€ 

Hδ  line is below the Inglis-

Teller limit [14], but there is still significant Stark mixing between states of different principal 

quantum number. The two figures show the sensitivity of the results to the reference point. The 

choice 

€ 

εo = 2.4εH , which is at the first maximum in 

€ 

J ω;ε( ) and occurs not far from the peak of 

the Holtsmark distribution function, displays a faster rate of convergence with increasing 

€ 

k . This 
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is confirmed in Fig. 3 where the integration of Eq. (1.1) as a function of Lanczos iterations is 

compared to the exact result (here exact denotes calculations using the conventional method). 

Note that even the 

€ 

k = 5 Lanczos results only produce ~1.5% error. The explanation follows 

from Fig. 4 where the integrand of Eq. (1.1) is plotted showing that the variations in 

€ 

Jk ω;ε( )  for 

different 

€ 

k  occur in the tail of the microfield distribution and have a small effect on the 

integration. The results suggest that high accuracy can be achieved with 

€ 

k ≈ 35, that is a 

considerable order-reduction compared to the original size of the matrix, 

€ 

m = 414 . 

Similar calculations are presented in Figs. 5 through 8 for   

€ 

ω = 3.05eV  located in the blue 

wing of the 

€ 

Hδ  line. Figures 5 and 6 show that the first peak in 

€ 

J ω;ε( ) is further away from the 

peak of the distribution, 

€ 

ε ≈ 7εH . These two figures display calculations using 

€ 

εo = 0 and 7εH  

and again show sensitivity to the reference point. The convergence of the integration in Eq. (1.1) 

is displayed in Fig. 7, which as suggested by Figs. 5 and 6, shows that the choice 

€ 

εo = 7εH  has a 

faster rate of convergence. The integrand of Eq. (1.1) at   

€ 

ω = 3.05eV  is displayed in Fig. 8 

showing that the variations in 

€ 

Jk ω;ε( )  occur in the tail of the microfield distribution not 

significantly affecting the error in the integration; hence, even for 

€ 

k = 5 the error is less than 7%. 

As in the previous case, accurate results can be obtained with 

€ 

k ≈ 35 Lanczos iterations. 

It is stressed that the convergence in Figs. 3 and 7 is not monotonic with increasing number 

of Lanczos iterations. Consequently, a robust convergence criterion will have to account for this 

possibility. These results also show sensitivity to the reference point, 

€ 

εo . Although a systematic 

choice was not determined, results selecting the value of 

€ 

εo  near the peak of 

€ 

J ω;ε( ) produce 

faster convergence than simply choosing 

€ 

εo = 0. Note, however, that the results for 

€ 

Jk ω;ε( ) 

using 

€ 

εo = 7εH  are starting to show discrepancies near 

€ 

ε = 0  for 

€ 

k = 5. This emphasizes that the 

Lanczos process is expanding about the reference point and probably should not be chosen far 

from the peak of the microfield distribution. 

4. Conclusions 

The highly efficient Padé Via Lanczos method was shown to be a viable approach for 

computing statistical Stark broadening of spectral lines. Moreover, the method allows for 

efficient calculation of the average over the microfield distribution so that it can be carried out 

with confidence in the results. It is important to note that the PVL method is an iterative 

algorithm and makes no compromises on the physics of the problem. The numerical accuracy is 
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controlled using a straightforward scheme to determine convergence of the Lanczos iterations. 

The simple examples considered here served to illustrate the advantages of the PVL method over 

the traditional approach. It is expected that for large matrices and relatively smooth field-

dependent line shape, the advantages can be even more dramatic. 

The PVL method does have potential deficiencies. In particular, the Lanczos algorithm can 

experience numerical inaccuracies. The problem is related to loss of orthogonality in the Lanczos 

vectors. Here, due to the initial operational cost of forcing the field-dependent line shape 

function to a form suitable for the application of the PVL method, the straightforward Gram 

Schmidt orthogonalization procedure, often considered too expensive in other applications, 

should be robust with relatively small additional computational cost. 

The main difficulty in a successful application of the PVL method is determining 

convergence of the Lanczos iterations. The procedure sketched here was based on direct 

evaluation of the quantity of interest, the integration over the quasi-static field. This is in 

principle a consistent approach that in practice needs further investigation. 
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Appendix 

The Lanczos method 

A detailed and thorough presentation of the Lanczos process for complex, non-symmetric 

matrices is provided elsewhere [7,15]. Nevertheless, this Appendix contains practical 

information that is useful in the implementation of the Padé Via Lanczos (PVL) approach. 

A.1 Description 

The goal is an efficient method for evaluating 

 
  

€ 


t I −εC( )−1r  (A.1.1) 

where 

€ 

C  is a complex, non-symmetric matrix. The tridiagonalization of 

€ 

C  is accomplished 

using the Lanczos Algorithm 7.42 of Ref. 15. The following description expands briefly on the 

explanation in [7,15], appropriately modified for complex non-symmetric matrices. 

The Lanczos method for non-symmetric complex matrices can be considered as an iterative 

approach for generating a pair of bi-hermitian conjugate spaces. Given a complex non-symmetric 

matrix, 

€ 

C , and a pair of vectors,   

€ 

  and 

€ 

r , one generates two Krylov spaces, which for 

€ 

k  

iterations are given by 

 
  

€ 

,Ch, Ch( )
2
,…, Ch( )

k−1


 
 
 

 
 
 

 (A.1.2) 

and 

 
  

€ 

r,Cr,C2r,…,Ck−1r{ }  (A.1.3) 

At each iteration, the Lanczos method generates Krylov spaces in succession by multiplying the 

matrix and its Hermitian conjugate with the current Lanczos vectors 

€ 

pi  and 

€ 

qi  where 

 

€ 

pi
hq j = δij  (A.1.4) 

and the matrices with columns formed by the vectors 

€ 

pi  and 

€ 

qi , which are denote by 

€ 

P  and 

€ 

Q, 

respectively, satisfy the relations in Eqs. (2.1.5) and (2.1.6). 

A simplification occurs when the starting vectors are chosen as 

 
  

€ 

p1 =  z 

q1 = r z
 (A.1.5) 

where the bar denotes complex conjugate and the scaling factor 

   

€ 

z = hr (A.1.6) 
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which are not affected by the Modified Gram Schmidt procedure (see Sect. 2.3) and satisfy 

Eq. (A.1.4). Then, it follows that  

     

€ 


hQ = e1

t  (A.1.7) 

 

€ 

Phr = e1 (A.1.8) 

where 
  

€ 

e1 = 1,0,…,0[ ]t  is the first unit vector of length 

€ 

k , the number of Lanczos iterations. 

Hence, Eq. (2.1.4) can be rewritten as  

 

€ 

Jk ω;ε( ) = −π−1 Im ze1
t I − ε −εo( )Tk[ ]−1e1{ } (A.1.9) 

This is an important result since only the 

€ 

1,1[ ] element of 

€ 

I − ε −εo( )Tk[ ]−1 is required. It is 

stressed that the algorithm must be implemented with “rebiorthogonalization” described in the 

comment corresponding to Line 17 of Algorithm 7.42 in Ref. 15. Also note the correction to 

Line 11 of the same algorithm, 

 

€ 

β j+1 = ω j  (A.1.10) 

without absolute values. Here 

€ 

ω j  is a variable in the algorithm not to be confused with the 

frequency variable, 

€ 

ω , used in the line shape function. 

A.2 Recursion relation 

Since 

€ 

Tk  is a tridiagonal matrix, it is possible to derive a Padé expansion for the 

€ 

1,1[ ] element 

in terms of 

€ 

ε. In practice, however, the evaluation of Eq. (A.1.9) can be done with a recursion 

relation. After performing 

€ 

k  steps of the Lanczos algorithm, the resulting tridiagonal matrix is 

 

  

€ 

Tk =

α1 γ2
β2 α2 γ3

β3 α3 

  γk
βk αk

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

 (A.2.1) 

The following recursion formulas can be used to evaluate 

€ 

f ε( ) . Define 

 

€ 

dk =1+ εαk  (A.2.2) 

and for 

€ 

2 ≤ n ≤ k  

 

€ 

dn−1 = 1+ εαn−1( ) −ε2 βnγn
dn

 (A.2.3) 

Then 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€ 

Jk ω;ε( ) =
z
d1

 (A.2.4) 

where 

€ 

z  is the scaling factor in Eq. (A.1.6). 

A.3 Numerical difficulties 

The remarkable savings offered by the Lanczos method application to spectral line 

broadening should not blind one to the numerical problems that may arise during the 

calculations. Note that these difficulties are not insurmountable but do deserve careful attention. 

Some of the main issues are discussed below. 

Although unlikely, the Lanczos method can fail even with full bi-orthogonalization. The 

specific ways in which this failure can occur are discussed in Ref. 15, and the appropriate 

stopping conditions are incorporated in Algorithm 7.42 in that reference. In case of failure, it 

may be necessary to use more sophisticated stabilization schemes such as the look-ahead 

Lanczos [8]. 

Since in the PVL method the evaluation of 

€ 

J ω;ε( ) is efficient, the accuracy of the numerical 

integration over the quasi-static Stark field can be assured by using an adaptive quadrature 

without incurring a large penalty. An alternative approach is to optimize the field mesh. The 

latter requires the eigenvalues of a complex non-symmetric tridiagonal matrix and the usual 

efficient algorithm can be unstable [7]. It may be necessary to resort to the more expensive Schur 

decomposition of the tridiagonal system to obtain the eigenvalues. 

The procedure to determine the number of Lanczos iterations needs to be robust. Since 

convergence with increasing numbers of iterations is erratic, it is not easy to determine when the 

process has converged. It may be necessary to use many more than the optimal number of 

iterations to ensure convergence. In connection with this problem is the range of integration over 

the field, which is not known in advance. It may be necessary to confirm that important features 

lying at large values of the microfield are not neglected. 
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Figure captions 

Fig. 1 

€ 

Jk ω;ε( ) versus field at   

€ 

ω = 3.02eV  using 

€ 

εo = 0 at 

€ 

Ne =1016 cm−3 and 

€ 

T =1eV  for 

several values of 

€ 

k . 

Fig. 2 Same as Fig. 2 using 

€ 

εo = 2.4εH . 

Fig. 3 Average of 

€ 

J ω;ε( ) over microfield distribution as a function of Lanczos iterations 

€ 

k  

relative to exact results using 

€ 

εo = 0 (dash) and 

€ 

εo = 2.4εH  (solid) at conditions of Fig. 1. 

Fig. 4 Integrand in Eq. (1.1) versus field for various Lanczos iterations 

€ 

k  at conditions of Fig. 1 

with 

€ 

εo = 0. 

Fig. 5 

€ 

Jk ω;ε( ) versus field at   

€ 

ω = 3.05eV  using 

€ 

εo = 0 at 

€ 

Ne =1016 cm−3 and 

€ 

T =1eV  several 

values of 

€ 

k . 

Fig. 6 Same as Fig. 5 using 

€ 

εo = 7εH . 

Fig. 7 Average of 

€ 

J ω;ε( ) over microfield distribution as a function of Lanczos iterations 

€ 

k  

relative to exact results using 

€ 

εo = 0 (dash) and 

€ 

εo = 7εH  (solid) at conditions of Fig. 5. 

Fig. 8 Integrand in Eq. (1.1) versus field for various Lanczos iterations 

€ 

k  at conditions of Fig. 5 

with 

€ 

εo = 0. 
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Fig. 1 

€ 

Jk ω;ε( ) versus field at   

€ 

ω = 3.02eV  using 

€ 

εo = 0 at 

€ 

Ne =1016 cm−3 and 

€ 

T =1eV  for 

several values of 

€ 

k . 
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Fig. 2 Same as Fig. 2 using 

€ 

εo = 2.4εH . 
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Fig. 3 Average of 
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J ω;ε( ) over microfield distribution as a function of Lanczos iterations 
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relative to exact results using 
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εo = 2.4εH  (solid) at conditions of Fig. 1. 
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Fig. 4 Integrand in Eq. (1.1) versus field for various Lanczos iterations 

€ 

k  at conditions of Fig. 1 

with 

€ 

εo = 0. 
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Fig. 5 

€ 

Jk ω;ε( ) versus field at   

€ 

ω = 3.05eV  using 

€ 

εo = 0 at 

€ 

Ne =1016 cm−3 and 

€ 

T =1eV  several 

values of 

€ 

k . 

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20

J(
Δ
ω

,ε
) [

ar
bi

ta
ry

 u
ni

ts
]

ε /ε
H

k = 5

10
25

exact

hω = 3.05eV
 
 
εo = 7εH

 
Fig. 6 Same as Fig. 5 using 

€ 

εo = 7εH . 
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Fig. 7 Average of 

€ 

J ω;ε( ) over microfield distribution as a function of Lanczos iterations 

€ 

k  

relative to exact results using 

€ 

εo = 0 (dash) and 

€ 

εo = 7εH  (solid) at conditions of Fig. 5. 
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Fig. 8 Integrand in Eq. (1.1) versus field for various Lanczos iterations 

€ 

k  at conditions of Fig. 5 

with 

€ 

εo = 0. 


